MCT2 Expression and Lactate Influx in Anorexigenic and Orexigenic Neurons of the Arcuate Nucleus
نویسندگان
چکیده
Hypothalamic neurons of the arcuate nucleus control food intake, releasing orexigenic and anorexigenic neuropeptides in response to changes in glucose concentration. Several studies have suggested that the glucosensing mechanism is governed by a metabolic interaction between neurons and glial cells via lactate flux through monocarboxylate transporters (MCTs). Hypothalamic glial cells (tanycytes) release lactate through MCT1 and MCT4; however, similar analyses in neuroendocrine neurons have yet to be undertaken. Using primary rat hypothalamic cell cultures and fluorimetric assays, lactate incorporation was detected. Furthermore, the expression and function of MCT2 was demonstrated in the hypothalamic neuronal cell line, GT1-7, using kinetic and inhibition assays. Moreover, MCT2 expression and localization in the Sprague Dawley rat hypothalamus was analyzed using RT-PCR, in situ hybridization and Western blot analyses. Confocal immunohistochemistry analyses revealed MCT2 localization in neuronal but not glial cells. Moreover, MCT2 was localized to ∼90% of orexigenic and ~60% of anorexigenic neurons as determined by immunolocalization analysis of AgRP and POMC with MCT2-positives neurons. Thus, MCT2 distribution coupled with lactate uptake by hypothalamic neurons suggests that hypothalamic neurons control food intake using lactate to reflect changes in glucose levels.
منابع مشابه
Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression
Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a m...
متن کاملMonocarboxylate Transporters (MCTs) and their Role in Hypothalamic Glucosensing
Monocarboxylate transporters (MCTs) have a high capacity to transport short-chain monocarboxylates, such as lactate, Pyruvate and the ketone bodies (KB), α-hydroxybutyrate and acetoacetate, which have a role in energy balance. In the brain, lactate is an important oxidative energy substrate [1], and its intracerebroventricular (ICV) administration decreases both food intake and blood glucose le...
متن کاملCoexpression of gonadotropin inhibitory hormone with Agouti-related peptide in the neurons of arcuate nucleus of ewe hypothalamus
Introduction: Gonadotropin inhibitory hormone (GnIH) and Agouti-related peptide (AgRP) are orexigenic peptides expressed in the arcuate nucleus (Arc) of the hypothalamus in the ewe. In addition, effects of GnIH and AgRP on the regulation of gonadotropin releasing hormone secretion have been shown in some mammals. The objective of the present study was to investigate the coexpression of GnIH ...
متن کاملThe LIM-homeobox transcription factor Isl1 plays crucial roles in the development of multiple arcuate nucleus neurons.
Neurons in the hypothalamic arcuate nucleus relay and translate important cues from the periphery into the central nervous system. However, the gene regulatory program directing their development remains poorly understood. Here, we report that the LIM-homeodomain transcription factor Isl1 is expressed in several subpopulations of developing arcuate neurons and plays crucial roles in their fate ...
متن کاملAntagonistic modulation of NPY/AgRP and POMC neurons in the arcuate nucleus by noradrenalin
In the arcuate nucleus of the hypothalamus (ARH) satiety signaling (anorexigenic) pro-opiomelanocortin (POMC)-expressing and hunger signaling (orexigenic) agouti-related peptide (AgRP)-expressing neurons are key components of the neuronal circuits that control food intake and energy homeostasis. Here, we assessed whether the catecholamine noradrenalin directly modulates the activity of these ne...
متن کامل